

VSML2512S5 Series, Current Sensor Resistor (Lead / Halogen Free)

The history of revision change for the specification

Date	Revision	Changes
2023/3/20	A0	Transfer from CYNPW-221-009 (A6) as official specification (CH)

VSML2512S5 Series, Current Sensor Resistor (Lead / Halogen Free)

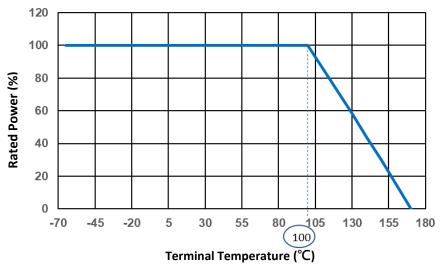
Features / Applications:

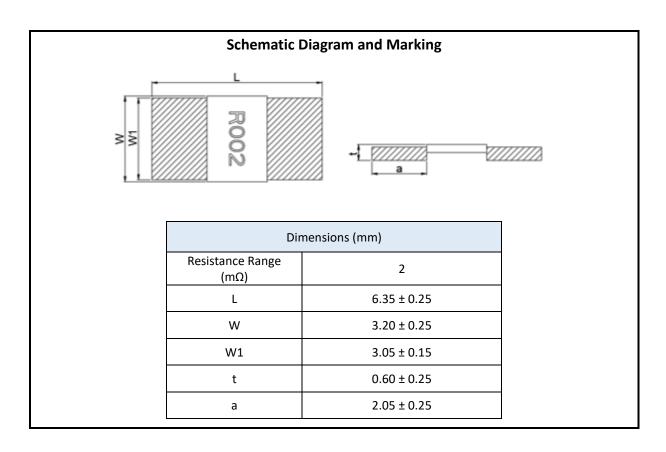
- High power rating is up to 5W
- Welding construction; excellent long-term stability
- Automotive applications
- RoHS compliant and AEC-Q200 qualified

Electrical Specifications:

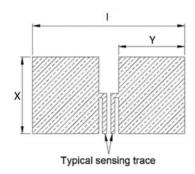
Characteristics ¹	Feature
Power Rating ²	5 W
Resistance Value	2 m Ω
Temperature Coefficient of Resistance (25/125 °C)	±75 ppm/°C
Operation Temperature Range	-65 °C ~ +170 °C
Resistance Tolerance	± 1%
Maximum Working Voltage (V)	(P*R) ^{1/2}

- 1. For detail information, please refer to the table on page 3 P/N list.
- 2. For resistors operated at terminal temperature over 100 °C, the maximum load shall be derated in accordance with the following curve.




Figure 1.: Power derating curve at terminal temperature

DOCUMENT: VSML2512S5


Page: 2 REVISION: A0

Outline Drawing:

Recommended Solder Pad Dimensions

Resistance Range	Dimensions			
mΩ	mΩ X (mm)		I (mm)	
2	3.7	3.2	7.35	

DOCUMENT: VSML2512S5

Page: 3 REVISION: A0

Type Designation:

V S M L 2512 S 5 — □□□□ □
(1) (2) (3) (4) (5) (6)

Note:

(1) Series No.

(2) Size

(3) Terminal Type: S = Short terminal

(4) Power Rating: 5 = 5W

(5) Resistance Value: $R002 = 0.002\Omega$ (6) Tolerance: $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$

P/N list:

D/N	R value	TCR	Power Rating		Tolerance	
P/N	(mΩ)	(ppm/K)	(W)	1%	2%	5%
VSML2512S5-R002*	2.0	±75	5	✓		

^{*} Note: Other values and tolerance would be available, please contact Cyntec.

DOCUMENT: VSML2512S5

Page: 4 REVISION: A0

Characteristics:

Electrical

Item	Specification and Requirement	Test Method
Temperature Coefficient (TCR)	As follow specification	JIS-C-5201 +25 °C / +125 °C.
Short Time Overload	\triangle R: \pm 0.5% Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.13 2.5 x rated power for 5 seconds.
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	JIS-C-5201-1 4.6 100 V _{DC} for 60 +10/-0 seconds
Voltage Proof	\triangle R: \pm 1% Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.7 400 V _{AC} (rms.) for 60 +10/ -0 seconds

Mechanical

Item	Specification and Requirement	Test Method		
The surface of terminal immersed shall be Solderability minimum of 95% covered with a new coating of solder		J-STD-002 Method B category 3 245 ± 5 °C for 5 ± 0.5 seconds.		
Resistance to Solder	△R: ± 0.5%	MIL-STD-202 Method 210		
Heat	Without distinct damage in appearance	260 ± 5 °C for 10 ± 1 seconds.		
Board Flex	\triangle R: ± 1.0% Without mechanical damage such as break.	AEC-Q200-005 Bending value: 2 mm for 60 ± 1 seconds.		
Vibration	\triangle R: \pm 0.5% Without distinct damage in appearance	MIL-STD-202 Method 204 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10- 2000 Hz.		

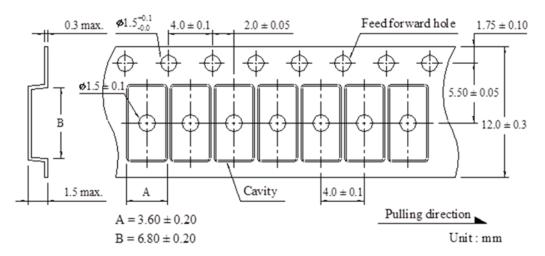
DOCUMENT: VSML2512S5

Page: 5 REVISION: A0

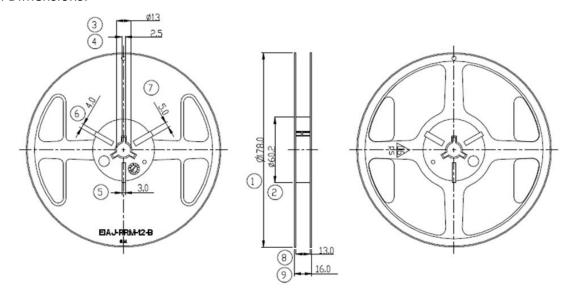
Mechanical Shock	\triangle R: \pm 0.5% Without distinct damage in appearance	MIL-STD-202 Method 213 100G's peak value, 6ms, Half-sine waveform, 12.3 ft/sec.
Terminal Strength (SMD)	\triangle R: \pm 1% Without mechanical damage such as break.	AEC-Q200-006 Force of 1.8 Kg for 60 seconds.

Endurance

Item	Specification and Requirement	Test Method	
		JESD22 Method JA-104	
Temperature Cycling	△R: ± 0.5%	-55 °C to 150 °C /1000cycle	
remperature cycling	Without distinct damage in appearance	30 min maximum dwell time at each	
		temperature on FR4(PCB).	
	△R: ± 0.5%	MIL-STD-202 Method 103	
Biased Humidity		1000 hours, 85 °C /85%R.H,	
	Without distinct damage in appearance	applied for 10% rated power.	
		MIL-STD-202 Method 108	
Operational Life	△R: ± 1.0%	70 °C, 100% rated power	
Operational Life	Without distinct damage in appearance	1.5 hours ON, 0.5 hours Off	
		For total 1000 hours	
High Temperature Storage	\triangle R: \pm 1.0% Without distinct damage in appearance	MIL-STD-202 Method 108 170 °C for 1000 hours.	
Moisture Resistance	\triangle R: ± 0.5% Without distinct damage in appearance	MIL-STD-202 Method 106 65 °C /90-100%RH, unpowered, 7b not required	


Note: Measurement at 24 \pm 4 hours after test conclusion for all reliability tests-parts.

DOCUMENT: VSML2512S5


Page: 6 REVISION: A0

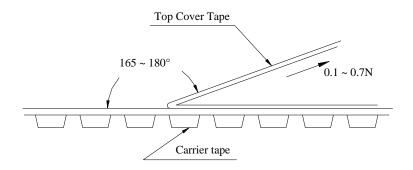
Packing Descriptions:

Dimensions:

Reel Dimensions:

Unit: mm

Symbol	1	2	3	4	5	6	7	8	9
Sizo	178.0	60.2	13.0	2.5	3.0	4.0	5.0	13.0	16.0
Size	±1	±0.5	±0.5	+0.5/-0	+0.5/-0	+0.5/-0	+0.5/-0	±0.5	±0.15


DOCUMENT: VSML2512S5

Page: 7 REVISION: A0

Peel Strength of Top Cover Tape:

The peel speed shall be about 300 mm/min and the peel force of top cover tape shall between 0.1 to 0.7 N $\,$

Number of Taping:

2,000 pieces / reel

Label Marking:

The following items shall be marked on reel

- (1) Description
- (2) Quantity
- (3) Part No.
- (4) Tapping No.

DOCUMENT: VSML2512S5

Page: 8 REVISION: A0

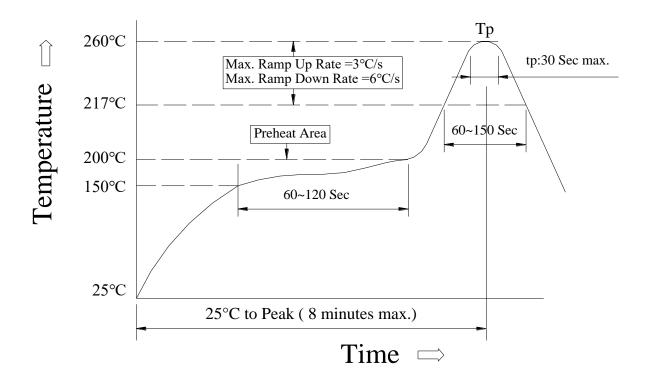
Care Note:

Care note for storage

- (1) Current sensor resistor shall be stored in a room where temperature and humidity must be controlled. (temperature from 5 to 35 °C; humidity < 60% RH. However, humidity should be kept as low as possible.)
- (2) Current sensor resistor shall be stored to prevent from direct sunshine.
- (3) Current sensor resistor shall be stored without moisture, dust and harmful gas (chloridation hydrogen, sulfurous acid, and sulfuration hydrogen), or the current sensor resistor will fail on solderability test.
- (4) Expiration date: One year after shipping date (product is required to return after expiration date)
- (5) Solderability should be confirmed in case of exceeding 12 months.

Care note for operating and handling

- (1) Protect the edge and coating of the sensors from mechanical stress.
- (2) Avoid bending of printing circuit board (PCB) when cutting and fixing it on support body to reduce mechanical stress on sensors.
- (3) Sensor should be used within the condition of specification.
 Note: if the voltage loaded on the sensor is higher than specified value, the current sensor resistor may fail due to temperature rise.
- (4) The loaded voltage should consider terminal temperature of the sensor according to the derating curve.
- (5) When applying a high current over suggested specification (pulse current, shock current) to the current sensor resistor, it is necessary to re-evaluate the operating condition before using it.


DOCUMENT: VSML2512S5

Page: 9 REVISION: A0

Reflow profile:

Suggested Reflow Profile

(1) Reflow Soldering Method:

Deflow Coldoving	Tp: 255~260 °C	Max.30 seconds (Tp)
Reflow Soldering	217 °C	60~150 seconds
Pre-Heat	150 ~ 200 °C	60~120 seconds
Time (25 °C to peak temperature)	8 minutes max.	

Reference: JEDEC J-STD-020E

DOCUMENT: VSML2512S5

Page: 10 REVISION: A0